
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

A Social-Network-Aided Efficient Peer-to-Peer Live
Streaming System

Haiying Shen, Senior Member, IEEE, Member, ACM, Yuhua Lin, and Jin Li, Fellow, IEEE

Abstract—In current peer-to-peer (P2P) live streaming systems,
nodes in a channel form a P2P overlay for video sharing. To
watch a new channel, a node depends on the centralized server
to join in the overlay of the channel. In today’s live streaming
applications, the increase in the number of channels triggers
users’ desire of watching multiple channels successively or si-
multaneously. However, the support of such watching modes in
current applications is no better than joining in different channel
overlays successively or simultaneously through the centralized
server, which if widely used, poses a heavy burden on the server.
In order to achieve higher efficiency and scalability, we propose
a Social-network-Aided efficient liVe strEaming system (SAVE).
SAVE regards users’ channel switching or multichannel watching
as interactions between channels. By collecting the information of
channel interactions, nodes’ interests, and watching times, SAVE
forms nodes in multiple channels with frequent interactions into
an overlay, constructs bridges between overlays of channels with
less frequent interactions, and enables nodes to identify friends
sharing similar interests and watching times. Thus, a node can
connect to a new channel while staying in its current overlay, using
bridges or relying on its friends, reducing the need to contact
the centralized server. We further propose the channel-close-
ness-based chunk-pushing strategy and capacity-based chunk
provider selection strategy to enhance the system performance.
Extensive experimental results from the PeerSim simulator and
PlanetLab verify that SAVE outperforms other systems in system
efficiency and server load reduction, as well as the effectiveness of
the two proposed strategies.

Index Terms—Peer-to-peer (P2P) live streaming, P2P networks,
social networks.

I. INTRODUCTION

P EER-TO-PEER (P2P) live streaming applications [1]–[3]
such as PPLive and UUSee are attracting millions of

viewers every day. The success of these applications is rooted
in the decentralized nature of P2P networks, which relieves the
load on the centralized server by utilizing the upload capacity
of participating users. Nowadays, in a live streaming system,
hundreds of media channels are broadcast to millions of users

Manuscript received March 02, 2013; revised August 18, 2013 and February
09, 2014; accepted March 10, 2014; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor M. Meo. This work was supported in part by the US
NSF under Grants IIS-1354123, CNS-1254006, CNS-1249603, CNS-1049947,
CNS-0917056, and CNS-1025652 and Microsoft Research Faculty Fellowship
8300751.
H. Shen and Y. Lin are with the Department of Electrical and Com-

puter Engineering, Clemson University, Clemson, SC 29634 USA (e-mail:
shenh@clemson.edu; yuhual@clemson.edu).
J. Li is with Microsoft Research, Redmond, WA 9805 USA (e-mail:

jinl@microsoft.com).
This paper has supplementary downloadable material available at

http://ieeexplore.ieee.org.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2311431

Fig. 1. Screenshot from PPStream.

at the same time [4]. For example, UUSee simultaneously
sustains 500 live streaming channels [2] and routinely serves
millions of users each day [5].
In current P2P live streaming systems, all nodes watching a

channel form into a P2P overlay for streaming video sharing be-
tween each other. To watch a new channel, a node needs to con-
tact the centralized server for the nodes in the channel in order to
join in the channel’s overlay. For example, nodes in UUSee need
to contact the server to obtain tens of nodes, which incurs a large
amount of communication overhead on the server. The current
wide coverage of broadband Internet enables users to enjoy live
streaming programs smoothly, and the increase of channels trig-
gers users’ desire of watching multiple channels successively
or simultaneously (i.e., multichannel watching mode). A typ-
ical multichannel interface contains one main view and one or
more secondary views [i.e., picture in picture (PIP)] as shown
in Fig. 1, so that users can switch freely between main view and
PIPs.
However, since most current P2P live streaming systems only

allow users to share the stream in one channel, the support of
successive and simultaneous watching modes in current appli-
cations is no better than joining in different channel overlays
successively or simultaneously through the centralized server.
Although today’s PPStream [3] application can support PIP,
it also uses this strategy. A node watching multiple channels
stays in multiple P2P overlays, and thus needs to maintain mul-
tiple overlays. As a node opens more channels, its maintenance
cost for overlay connections increases dramatically. Also, the
server receives more requests from nodes to join in new chan-
nels. Thus, the successive-channel or multichannel watching of
millions of users poses heavy burden on the centralized server,
and delayed response leads to inefficiency in P2P live streaming
systems [6].
In this paper, we aim to improve the efficiency and scalability

of P2P live streaming systems with many users engaging in
many successive-channel watching or multichannel watching
by releasing the load on the centralized server. We propose a
Social-network-Aided efficient liVe strEaming system (SAVE).

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

The key of its design is the utilization of social network
concepts. By considering channels as nodes in a social net-
work, SAVE regards users’ channel switching or multichannel
watching as interactions between channels. By considering
users as nodes in a social network, SAVE identifies users with
the same interests and watching times as friends with social
connections. Note that we leverage social network behavior
properties rather than online social networks. Specifically,
SAVE incorporates two main schemes: channel clustering and
friendlist.
Channel Clustering Scheme: A node’s watching activity is

driven by its interests [7], [8]. Thus, nodes with similar interests
tend to routinely watch the same channels and may watch them
in the same time periods. Also, the channel watching activities
of each node are mostly limited to a small number of channels
that it is mostly interested in [9]–[11]. Therefore, SAVE clus-
ters channels with frequent interactions. It merges channels with
high frequent interactions into one overlay and builds bridges
between the channels with less frequent interactions. Thus, in
successive- or multichannel watching, nodes can stay in the
same overlay or take the interchannel bridges to join in a new
overlay without relying on the server with high probability. We
propose a centralized algorithm and a decentralized algorithm
for the channel clustering.
Friendlist Scheme: The navigability property in a

small-world network shows that a node is able to find a path
to a destination node within a short number of steps [11]–[13],
which indicates that a node in a channel can find a node in
another channel in a few steps via friend connections. There-
fore, each node in SAVE maintains a friendlist that records
nodes sharing common-interest channels and watching time
periods. When a node wants to switch to a channel that is not
in its current cluster or when a node returns to the system after
departure, it refers to its friendlist to find nodes in the desired
channel to join in the overlay. We propose an algorithm for
identifying friends for the friendlist construction.
From the perspective of the entire system, for the individual

nodes’ skewed interests, some interests are shared by a large
portion of the nodes in the system, while others are shared by a
small portion of the nodes. The former interests are handled by
the channel clustering scheme, and the latter interests are han-
dled by the friendlist scheme.We further propose channel-close-
ness-based chunk-pushing strategy and capacity-based chunk
provider selection strategy to enhance the system performance.
The two schemes with the strategies contribute to the following
three main features of SAVE, and hence enhance the system ef-
ficiency and scalability as well as satisfactory user experience.
• Low overhead. In SAVE, nodes can stay in the same
overlay when they switch channels or watch multiple
channels in most cases, which greatly reduces the over-
head caused by frequent join and leave operations and
overlay maintenance.

• Quick response. When switching channels, users experi-
ence delay, which is decided by both the buffering speed
and the latency of joining a channel [6]. Switching chan-
nels in SAVE in most cases does not need users to leave
their current overlay and join in a new overlay, leading to
low delay and better user experience.

• Light server load. Light server load can greatly reduce
the bandwidth and hardware cost and improve system

scalability. In SAVE, nodes can join in a new channel
overlay without the participation of the server most of the
time, reducing the server load.

We conducted a survey on user streaming video watching ac-
tivities. The survey result shows that: 1) users tend to watch
different channels successively; 2) the distribution of a user’s
interests is skewed; and 3) many users share the same interests
and watching times. The survey results are consistent with the
study results in the previous studies [14]–[16]. They confirm
the social network properties in P2P live streaming systems and
demonstrate the feasibility and necessity of SAVE to a certain
extent. We conducted simulations in PeerSim [17] and deployed
SAVE on PlanetLab [18]. Extensive experimental results prove
that SAVE outperforms other systems in terms of system effi-
ciency and server load reduction.
The problem handled in this paper is channel switching and

multichannel watching in users’ routine video watching activ-
ities. Note that Zapping [19] is a common behavior in multi-
cast-based IPTV when users surf channels and pick their fa-
vorite one. Though zapping is not the main focus of our work,
the SAVE’s design actually does not exclude the zapping behav-
iors. When there a large number of zapping activities between
two channels, SAVE can be effective in reducing startup delay
in zapping.
The remainder of the paper is organized as follows. Section II

gives an overview on the related work. Section III describes
the design of SAVE. The performance evaluation is presented
in Section IV. Section V concludes the paper with remarks on
future work. Sections VI andVII in the supplemental file present
our survey results on live streaming video watching activities
and additional experimental results of the performance of SAVE
built on the DHT structure of DCO [20].

II. RELATED WORK

P2P Live Streaming Channel Overlays: P2P live streaming
protocols fall into four categories: tree-based [21]–[24], mesh-
based [25]–[32], hybrid structure combining both mesh and tree
structures [15], [33]–[37], and distributed hash table (DHT)-
based structure [20].
Tree-based methods deliver video content via push mech-

anism, in which parent nodes forward received chunks to
their children. Early proposed tree-based methods such as
Narada [23] and multicast [22] rely on a single tree structure,
which is vulnerable to churn. Recent works [24], [34] build
multiple trees, in which leaf nodes join in several trees to
improve the system resilience to churn.
Mesh-based methods [26]–[28] connect nodes in a random

manner to form a mesh structure. Each node usually serves a
number of nodes while also receiving chunks from other nodes.
eQuus [29] further facilitates clustering and locality-aware
mechanisms, while other works [30]–[32] introduce improved
packet scheduling protocols. Mesh-based methods are resilient
to churn, but generate high overhead by frequent content
publishing.
Hybrid methods synergistically combine tree-based and

mesh-based structures. Wang et al. proposed a hybrid structure
consisting of two tiers [15], [35]. It utilizes stable nodes to
constitute a tree structure to push down video chunks, while
all nodes also form a mesh overlay for chunk exchanges.
PRIME [33] is a hybrid system featured in segmented and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: SOCIAL-NETWORK-AIDED EFFICIENT P2P LIVE STREAMING SYSTEM 3

two-phase chunk delivery. Shen et al. [20] proposed to use
DHT structure to index video chunks for P2P video streaming
systems. SAVE can be implemented on top of these different
overlay-based systems to improve their performance.
Multichannel P2P Live Streaming Techniques: One group

of works is for bandwidth allocation optimization. In order to
optimize the allocation of each node’s upload capacity to each
channel it is watching, Wu et al. [38] used game theory to
resolve the conflicts in allocating bandwidth. By noticing that
overlays are overlapped in multichannel applications, DAC
[39] divides the nodes in the overlap to several virtual logical
nodes with each in a single channel overlay. Then, by mapping
the service relationship among the independent overlays, DAC
models the bandwidth allocation problem to a solvable global
optimization problem. AnySee [27] uses the mesh overlay
structure and incorporates a location matching algorithm to
map logical overlay to the physical location topology. Path
selection is based on physical location topology.
Liang et al. [40] envisioned a framework of future video

streaming, in which users can freely choose to watch one or
more channels simultaneously. Wang et al. [41] proposed se-
lecting neighboring nodes based on the channel subscription
and residual bandwidth. To maintain system stability with high
churn, Wu et al. [42] developed queuing models to analytically
study the performance of multichannel P2P live video systems
and derived near-optimal provisioning rules for assigning peers
to channels. SAVE is different from the above works in that it
aims to achieve efficient node joining in channels in channel
switching or multichannel watching. Ramos et al. [43] proposed
a method to send channels adjacent to the requested one to
the Set Top Box (STB) during zapping periods in IPTV net-
works, so that STB can turn the source signal into content to
be displayed on the screen during user channel switching. Ker-
marrec et al. [44] proposed a method in which each peer main-
tains a predefined metric (e.g., proximity, latency, or bandwidth)
and chooses some peers based on the metric in other channels
as contacts upon channel switching. Chen et al. [19] proposed
OAZE, where each peer maintains connections to other physi-
cally close peers in a certain number of channels, which its as-
sociated user is likely to watch. When a node wants to switch
to a channel, it tries to find neighbors connecting to the target
channel for the switch. However, a node’s neighbors may not
connect to the target channel, so OAZE cannot provide a high
probability for a node to find a neighbor to switch to its target
channel. SAVE differs from the above systems in that it lever-
ages the social network in channels and the social network in
users to facilitate the channel switching. SAVE’s channel clus-
ters and friendlists help nodes to join in their target channels
without relying on the server with a very high probability. Also,
SAVE produces less overhead than OAZE since a node needs
to contact fewer nodes for a channel switching.
Social-Network Aided Video-on-Demand Systems: Several

social-network-based video-on-demand systems have been
proposed. Cheng et al. [45] investigated the social networks in
YouTube videos. They found that the links to related videos
specified by uploaders have small-world characteristics. They
further proposed NetTube [7] that uses the links between
related videos to generate a social network of nodes, and then
uses a social-network-assisted prefetching strategy to achieve
smooth transition between video playbacks. Salvador et al. [46]

Fig. 2. High-level view of the SAVE structure.

Fig. 3. Hierarchical tree structure in SAVE.

proposed to use node characteristics including geographical
location, node availability, and distance for video file sharing.

III. DESIGN OF THE SAVE SYSTEM

A. Overview of SAVE

Fig. 2 shows a high-level view of the structure of SAVE. The
server node (denoted by ) is the center of the entire network.
Initially, all nodes in each channel form an overlay. In SAVE,
each channel overlay has a channel head denoted by , which
is a stable node with the highest capacity and longest lifetime
staying in the channel. SAVE has two main schemes: channel
clustering and friendlist.
Channel Clustering Scheme (Section III-B): This scheme

considers the interactions between channels and connects the
frequently interacted channels (i.e., connects a group of nodes
with similar successive- and multichannel watching activities).
As time goes on, the information of watching activities of
the nodes is collected, and the single channels are gradually
grouped into channel clusters. Channel overlays in one channel
cluster, denoted by cr, are merged into one overlay or are
bridged. By bridged, we mean the head of each channel
overlay is connected with the heads of other channel overlays
in the cluster. As shown in Fig. 3, each cluster also has a cluster
head, denoted by , connecting with all in its cluster.
The nodes in each channel cluster can, with great probability,
quickly switch between or simultaneously watch their favorite
channels without the involvement of the central server.
Friendlist Scheme (Section III-C). The friendlist scheme en-

ables a node to maintain a friendlist that records nodes with
similar individual channel watching patterns (i.e., interest chan-
nels and watching time). By relying on the friendlist, a node can
quickly join in a channel that is not in its current cluster. Also,
when a returning node (non-first-time user) starts to watch a
channel, it can rely on its friendlist rather than the server to join
its desired overlay.
As a result, when a node connects to a new channel, it first

attempts to take advantage of the channel cluster. The node can
directly request chunks in its current overlay if the overlay owns
the channel. Otherwise, the node tries to take the bridge con-
necting to the new channel. If it fails, it uses its friendlist. If it



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Illustration of the parameter definitions. (a) Channel switching.
(b) Multi!channel watching.

cannot find a friend in its desired channel within certain hops, it
resorts to the server finally.

B. Channel Clustering

We use channel closeness of two channels to reflect the fre-
quency of interactions between these channels, i.e., the recent
tendency of nodes to switch between or watch both channels.
Such a tendency can be evaluated by three factors: 1) the
age (i.e., freshness) of the node’s switching or multichannel
watching activity on both channels; 2) the time period that the
node stays in both channels; and 3) if both the channels are in
the node’s interested channel list. We introduce how to consider
these factors to calculate the channel closeness.
As shown in Fig. 4(a), for a node’s switching activity from

channel to channel , we define age as the time elapsed
since the switching. We define as the time interval that
the node stays in channel before switching. Similarly, as
shown in Fig. 4(b), for a node’s multichannel watching activity
on both channels, we define age as the time elapsed since the
multichannel watching is started, and define and as
the time interval that the node stays in both channels; note

. When reaches a certain value, we consider
the node is truly interested in watching channel . Accordingly,
we predefine a threshold , and define parameter
when ; otherwise . In SAVE, each node
has a profile that lists its interested channels specified by the
user. If both channels and are in the node’s interested
channels, we consider the switching nonaccidental, and set
the value of parameter to 1. Otherwise, we set to
minimize the influence of accidental switching activities. The
scale for parameter and is adjustable. They reflect, to a
certain extent, whether both and are the node’s interested
channels, and the switching or multichannel watching is the
node’s routine activity.
The channel head of channel keeps a record of channel

watching and switching activities of nodes in channel (denoted
by ) and calculates the channel closeness between channels
and by

(1)

where is a scaling parameter, which exponentially re-
duces the freshness of switching and multichannel watching ac-
tivities. Thus, the value of C(x,y) is in the range of (0, 1].
The closeness of two channels can be regarded as the weight

of a link connecting them in the social network graph. The
channel clustering is the process of grouping channels with
high-weight links. SAVE aims to generate clusters so that
the number of intracluster interactions is maximized and the

Fig. 5. Minimum-cut tree-based clustering algorithm.

number of intercluster interactions is minimized. To this end,
we first propose a centralized method using the server to
collect global interchannel activities for channel clustering
(in Section III-B.1). Then, we further develop a decentralized
method to cluster channels by utilizing the local interchannel
activity information (in Section III-B.2).
1) Centralized Channel Clustering: In the centralized clus-

tering method, nodes report their activities to their channel
heads, which calculate channel closeness and report the in-
formation to the server. Then, the server conducts channel
clustering. The server first generates an undirected graph

, where vertices represent channels and edges
represent the interactions between channels. The weight of
the edge connecting channels and is the sum of channel
closeness and . The server then uses the min-
imum-cut tree-based algorithm to divide the vertices in the
entire graph to subsets, i.e., to create channel clusters. As
shown in Fig. 5, a cut separates all channels in graph into
two channel subsets and . The value of a cut equals the
sum of the weights of the edges crossing the cut. The min-
imum-cut tree algorithm creates clusters that have small sum of
intercluster cut values and relatively large sum of intracluster
cut values. Algorithm 1 shows the pseudocode of the clustering
algorithm corresponding to the process in Fig. 5. First, we
insert an artificial sink into the graph (step 1). The
sink is connected with all channels in the graph with weight

(steps 2–4). is used to control the number of
generated clusters. If , all channels will be in one giant
cluster, while will make all channels become singletons.
Then, we use the maximum flow algorithm [47] that involves
a recursive process to construct a minimum-cut tree with the
minimum sum of the values of cuts (step 5). Next, we remove
the sink, and graph consequently is divided into several
clusters (steps 6 and 7). The intracluster cut value can be used
to measure the tightness of channels in each cluster. If a cluster
has tightness higher than a predefined threshold, its channels are
merged to one overlay. Otherwise, its channels build bridges
between each other. The minimum cut algorithm requires a
computation complexity of [48].
Other clustering approaches (e.g., [49]) can also be adopted for
the channel clustering in SAVE.
2) Decentralized Channel Clustering: For ease of presen-

tation, we use channel cluster to denote both individual chan-
nels and a cluster of multiple channels. A cluster head is the
most stable node with the highest capacity and longest lifetime
staying in the cluster. The decentralized method aims to gen-
erate andmaintain a stable state for the created clusters, i.e., they
have small sum of intercluster closeness and relatively large



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: SOCIAL-NETWORK-AIDED EFFICIENT P2P LIVE STREAMING SYSTEM 5

Algorithm 1: Centralized channel clustering algorithm
executed by

1 ; // is the sink;
2 //Connect to to generate an expanded graph

;
3 for all nodes do
4 Connect to with an edge of weight ;
5 Calculate the minimum cut tree of ;
6 Remove from ;
7 Divide to clusters with small sum of intercluster cut
values and large sum of intracluster cut values;

8 Return all connected subgraphs as the clusters of ;

sum of intracluster channel closeness. For this purpose, we in-
troduce a concept: stability of cluster to cluster , denoted
by

(2)
where is the number of channels in . A higher

means more channel interactions within than
between and . We use and to denote the set and
the number of all channel clusters in the system, respetively.
Cluster head builds a cluster stability vector, denoted by

We use the number of users for cluster (denoted by )
to represent the cluster’s popularity. If the channels in are
more popular, nodes in have a higher tendency to watch the
channels in . Thus, we define inverse popularity vector of

, which includes of each channel cluster in
, and define ’s cluster stability degree as

(3)

Channel clusters with larger values are more stable, i.e.,
more interactions occur within the cluster than outside the
cluster.
We use to denote the cluster that groups and

(i.e., ). To create stable clusters, for each
interacted cluster , cluster head calculates based
on (3). If , that is, the stability degree of the
grouped cluster is higher, intends to group with .
Algorithm 2 shows the decentralized channel clustering algo-

rithm. It is conducted by each channel cluster head to iden-
tify channel clusters in that it can group with to maximize
its . Each cluster head periodically collects the infor-
mation of intracluster and intercluster interactions between its
own cluster and other clusters, and calculates and
(step 1). For each interacted cluster (step 2), calculates
the grouped cluster (step 3), asks for informa-
tion from (step 3), and then calculates (steps 5–8).
If is more stable than (i.e., ),
sends an invitation to . then decides whether adding
will cause an increase of its . If yes, it accepts the invitation.

Algorithm 2: Decentralized channel clustering procedure
executed by cluster head

1 Calculate and [(2) and (3)];
2 for each interacted channel cluster do
3 ;
4 Ask for information from ;
5 for each channel cluster do
6 Calculate in [(2)];
7 Calculate ;
8 Calculate [(3)]
9 if then
10 // is more stable than ;
11 Return ; //return the selected

If is greater than a predefined threshold, two clusters
merge to one overlay. Otherwise, they build bridges between
each other. The interactions between channels in one cluster
may diminish over time.
Each cluster head periodically uses the minimum-cut tree-

based clustering algorithm to partition its cluster. If it finds that
the partition leads to a higher for a new partitioned cluster,
this partitioned cluster is split from the cluster.
Suppose is the maximum number of activities in is

the maximum number of channels in a cluster, and is the
maximum number of channel clusters. The complexity of the
calculation in steps 1, 6, and 8 in Algorithm 2 is ,
and the loops in steps 2 and 5 have iterations. Therefore, the
algorithm has a complexity of .
3) Cluster Combination and Partition: We use “cluster com-

bination and partition” to represent both “bridge construction
and removal” and “overlay combination and separation.” As
shown in Fig. 3, SAVE has a hierarchical tree structure com-
posed of the nodes, channel heads, cluster heads (only in the de-
centralized clustering method), and the server in the bottom–up
direction. In a channel overlay, each node has a connection with
the channel head. In a cluster, each channel head has a con-
nection (i.e., bridge) with the cluster head. Also, the server has
connections with all channel heads and the cluster head in each
cluster.
In the centralized clustering method, the server notifies the

channel heads of frequently interacted channels to build or
remove bridges between them. In the decentralized clustering
method, the cluster heads communicate with each other for
the bridge construction and elimination. In cluster combining,
to build a bridge between two channel clusters (including
individual channels), each channel head in one cluster builds
connection with each channel head in the other cluster. The
more stable and higher-capacity cluster head becomes the
cluster head of the new bridged cluster. In both centralized and
decentralized methods, after the bridge is built, the channel
heads notify the nodes in their channels about the bridge estab-
lishment. Each channel head and nodes in a cluster maintain a
record of all channels in its cluster.
When a cluster head finds that splitting a cluster (or a channel)

from its cluster can increase its cluster’s , it notifies the
head of this cluster (or channel). The notified head removes the
bridges to other channels and becomes the cluster head of its
cluster. The cluster head also notifies all other channel heads



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Profile of a node.

TABLE I
RECORD FOR A FRIEND IN THE FRIENDLIST

in the cluster, which remove the corresponding bridges. After
a channel head removes the bridges, it notifies its nodes in the
channel, which update their records of bridged channels.

C. Friendlist Construction

Today’s live streaming applications usually list a number of
interest tags for channels. SAVE requests users to fill their in-
terest tags manually when they initially join in the system and
to periodically update their tags. Fig. 6 shows a node’s profile
based on its own channel watching activities in SAVE. “Interest
tag” is a channel category such as comedy, sports, and news that
a node likes to watch. “Channel” lists the channels that the node
frequently watches in an interest tag. “Frequency” and “Watch
time” stand for the frequency and time of watching the chan-
nels in an interest tag during a certain period. “Active vector”
represents the daily watching routine of a node. By dividing the
24 h of a day to time-slots, we can use a binary string to repre-
sent the activity of a node during a day. For example, 00010010
means that the user usually watches video from 9:00 am to
12:00 pm and 6:00–9:00 pm. The time is unified into a standard
time zone. A fine-grained time partition can be used to improve
the accuracy.
To determine the similarity of two nodes, and , we con-

sider their common interests, common frequently watched chan-
nels, and the overlap of their watching time periods. Accord-
ingly

(4)

where includes the common tags between and ;
is the similarity between their channel

lists and ; is the similarity of their
active vectors and . The similarity of two nodes represents
the probability that they watch the same channel at the same
time. Unlike other social-network-based methods [7] that only
consider common interests, SAVE also considers watching time
for friend clustering, which leverages user routine behavior for
efficient video sharing.
Each node in SAVE maintains a friendlist that records a cer-

tain number of friends sharing high similarity with itself. The
record of a friend consists of the items listed in Table I. When
node communicates with the heads or the server during video
watching, it piggybacks its profile on the messages. The heads
or server then send back a list of friends sharing high similarity
with for friendlist creation and update. Note that there may be
overlaps between a node’s neighbors in its channel (or cluster)

overlays and the recommended friends. To avoid sending un-
necessary requests to friends that cannot help with the channel
switching, a node excludes its overlay neighbors from the rec-
ommended friend list when creating or updating its friendlist.
To keep the friendlist updated, node periodically updates its
friendlist by calculating , where is the time
interval between the creation/update time of the friend in
the friendlist and current time. The profiles with the similarity
values less than a predefined threshold will be discarded.
On weekends and holidays, users’ video watching time

should be different from weekdays. We can add the “active
vector” for weekends and for holidays in each node’s profile
to increase the accuracy of user watching time pattern, and
consider these active vectors when determining the watching
pattern similarity of two nodes. Then, when searching for video
chunk providers, we also consider weekends and holidays. We
will conduct this nontrivial task of considering weekends and
holidays to enhance the accuracy in our future work.

D. Efficient Multichannel Video Streaming

When node initially joins in SAVE, it requests to rec-
ommend nodes in its desired channel. Node then joins in the
channel overlay by connecting to the recommended nodes for
chunk sharing. In a cluster, channels could be merged into one
overlay or bridged. Because the channels in a merged overlay
are very close to each other (i.e., nodes frequently conduct suc-
cessive- or multichannel watching activities on these channels),
when a node in a merged overlay wants to switch channel or
watch multichannels, it has a high probability to find its re-
quested chunks from its overlay using the original chunk search
algorithm [15], [20]–[37]. Because the bridged channels are rel-
atively close to each other, a node is very likely to find the
bridges to join in the overlay of its desired channel. If the node
fails to find such a bridge, it then uses its friendlist, and finally
resorts to the server.
We explain the details of the channel switching or joining.

To use bridges to switch to channel , node in channel
directly sends a request with chunkName to its channel head
, which checks whether it connects to . If yes, it for-

wards the request to . Then, responds to with a few
nodes in its channel overlay and also forwards the chunk re-
quest to its neighbors. The chunk owner is searched by using
the original chunk search algorithm in the P2P live streaming
systems [15], [20]–[37]. The chunk owner sends the requested
chunk to . connects to the returned nodes, and hence has
joined in . If is not bridged with , then tries to use its
friendlist to find a bootstrap node to join in . sends a request
with time to live (TTL) to all of its friends. The TTL denotes the
number of hops a request will be forwarded. After receiving the
request, a node checks whether it is in the overlay of . If not,
it decreases the TTL by one and further forwards the request to
its friends. Otherwise, it responds to the requester with a few
nodes in , and also finds a chunk provider, which returns the
requested chunk to . Then, connects to the returned nodes
and has joined in . The node with notifies that
the search has failed. Then, resorts to the server to join in .

E. Capacity-Based Chunk Provider Selection

A node’s capacity represents the number of chunk requests
it can concurrently serve. When there are several potential



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: SOCIAL-NETWORK-AIDED EFFICIENT P2P LIVE STREAMING SYSTEM 7

chunk providers in the network, selecting a high-capacity node
improves user watching experience. Section III-D explained
how node requests the chunks of its desired channel when
it wants to switch channel or watch multichannels. When
in channel wants to switch to channel , if and are
bridged, the channel head of will recommend a few
nodes in its channel overlay to ; otherwise, if node within
TTL hops of ’s friend network is in the overlay of
recommends a few nodes in the overlay of . Before or
recommends nodes to , they can ask several candidates

about their available capacities, and then pick the ones with the
highest available capacity to recommend. To avoid the latency
for the available capacity querying, the nodes in each channel
overlay can periodically report their available capacities to
their channel head, which further broadcasts this information
to all nodes in the channel overlay. Thus, a channel head or
a friend can directly recommend the nodes with the highest
available capacity. By connecting to high-capacity nodes as
chunk providers, the chunk requester can have a better watching
experience.

F. Structure Maintenance in Node Churn

Node churn is mainly about the node joins and departures
from the system, namely the nodes are getting offline or online.
SAVE needs to maintain its structure in node churn. To ensure
there is always a head node in each channel, before a channel
head departs, it selects a new head node and transfers all of its
information to the new head. Also, it notifies all related nodes
including all nodes in its channel and the channel heads of other
channels in its cluster about the new channel head. It also noti-
fies the server in the centralized method and notifies the server
and its cluster head in the decentralized method. The notified
nodes update their connections accordingly. The joins and de-
partures of normal nodes are handled by the original protocol in
the P2P live streaming system [15], [20]–[37]. A head may fail
without warning. If node has not received a response from its
connected node after a certain period of time, it assumes that
is dead or has left the systemwithout warning. If is a head,
notifies the server, which selects the node with the highest

stability and capacity and longest lifetime from the nodes in the
channel and notifies all nodes that originally connected to the
old head. The departures and failures of cluster heads are han-
dled in the same way as the channel heads. SAVE can use mul-
tiple channel heads and cluster heads to enhance system relia-
bility, but at the cost of higher maintenance overhead.

G. Channel-Closeness-Based Chunk-Pushing

How to fully utilize the limited cache of each node to re-
duce channel viewing startup delay is a challenge. Xu et al. [50]
showed that when the cache used for a channel reaches 660 kB,
the cache hit rate nearly reaches 100%. The chunk unit size is
the fixed data piece size (1 kB) in data transmission in P2P live
streaming [50], [51]. Then, the number of cached chunks needed
for one channel being watched is 660. Thus, reserving kB
(i.e., -chunk) cache for the channels that a node is si-
multaneously watching is sufficient for smooth watching ac-
tivity. The remaining cache can be used for prefetching chunks
of channels the node is very likely to watch.
Recall that the channel closeness of two channels indicates

the probability that nodes in one channel will switch to the other

Fig. 7. Cache allocation for different channels in a node.

or nodes simultaneously watch them. If channels and are
close channels (in a merged overlay or two bridged overlays),
nodes in channel tend to watch channel . Then, if the
chunks of can be cached in the nodes in , when viewers
want to watch , they can immediately watch through these
cached chunks before connecting to chunk providers in .
Based on this rationale, we propose a channel-closeness-based
chunk-pushing strategy, in which the chunks of the close
channels of each channel are pushed to the caches of the
nodes in to maximally reduce the startup delay of channel
watching. As a channel being watched needs 660-chunk cache
size, -chunk cache can be used for a channel not being
watched. The value of is determined so that the time for
viewing chunks can cover the time for finding chunk
providers to which to connect. Fig. 7 depicts the cache alloca-
tion of different channels in a node, and only the extra cache
space is used for pushed chunks.
Recall that the server keeps track of the switching and mul-

tichannel watching activities in the entire system and calcu-
lates the closeness between each pair of channels periodically.
Based on this information, the server then identifies a list of
top closest channels for each channel represented by

, which is ordered in the descending order of their
closeness with channel . The server then pushes chunks
of each channel in to randomly selected nodes in the overlay
of so that each chunk exists in caches. This process is
completed in a -round iteration. In each round, the server ran-
domly selects a node from the overlay of with extra cache,
and pushes the chunks of each to it until
the node has no extra cache or the chunks of are pushed. In
the former case, the server randomly selects another node and
continues to push the remaining chunks. These cached chunks
will then be further pushed to nodes throughout the overlay of
. Specifically, overlay neighboring nodes piggyback the infor-

mation of their extra cache sizes and cached channels in on
their periodical exchanged messages for overlay maintenance.
If node notices that its neighbor node has extra cache and
does not have its cached chunks, pushes these chunks to .
Since chunks from higher-closeness channels to channel have
a higher probability to be requested by the nodes in , a node
gives a higher priority to chunks of higher-closeness channels
to be stored in its cache. Whenever a node needs to cache new
channel chunks and its cache is full, it selects the oldest chunks
of the least-close channel to replace.
With our proposed chunk-pushing strategy, when node in
wants to watch channel in , if has cached chunks

for , it can immediately start watching before it finds and
connects to chunk providers of . Otherwise, node searches
cached chunks in its nearby nodes in the overlay of when
it searches the chunk providers as introduced in Section 3.4.
That is, node first broadcasts a chunk request containing the
chunkName with TTL to nodes within its current overlay. If re-
quest receiver has pushed chunks of channel sends



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Experimental results from simulation on PeerSim. (a) Channel switch delay. (b) Server load. (c) Distribution of resolved switching requests. (d) Effective-
ness of friendlists. (e) Clustering cost.

TABLE II
EXPERIMENT DEFAULT PARAMETERS

these chunks back to . Then, is able to begin watching
channel before it finds and connects to the chunk providers
of , thus decreasing the watching startup delay. Note that this
cached chunk searching step can be integrated with the orig-
inal chunk search algorithm in node ’s merged overlay. The
chunks of close channels to channel are frequently demanded
by nodes in . By pushing these chunks to nodes in , our pro-
posed strategy reduces the watching startup time.

IV. PERFORMANCE EVALUATION

To evaluate the performance of SAVE, we used the event-
driven simulator PeerSim [17]. In order to further investigate
the performance of SAVE in the real-world environment, we
also built SAVE prototypes on the PlanetLab [18] real-world
testbed. PlanetLab can provide real delay measurement due to
the heterogeneous and time-varying bandwidths and instability
of nodes. The data from our survey in Section VI of the supple-
mentary file is used as the foundation to simulate user activities
to make the experiment more realistic. Each test lasts for 24 h. In
our simulation, the P2P live streaming system consists of 10 000
nodes and 100 channels. We set the default video bit rate, which
is the size of a video segment per second, to 600 kb/s [52]. In
(1), was set to 1.02 and was set to 10 min. In the PlanetLab
experiment, we selected 300 online nodes and chose the com-
puter with IP address 128.112.139.26 in Princeton University as
the server. Considering that the PlanetLab test have much fewer
nodes than the simulation, we reduced the number of channels
to 30.
The TTL for friend lookup through friendlists was set to 2.

The number of interests of each node is distributed in [1], [7]
according to the survey results shown in Fig. 24 of the supple-
mentary file. We regarded one interest as an interested channel.
We evenly divided the 30 or 100 channels to five groups. Each
node chose 90% of its interested channels from one group ran-
domly chosen from the five groups, and chose the remaining
10% of its interested channels randomly from the channels in

other groups. When a node switches channels, it has 90% prob-
ability to watch a channel in its interested channels, and 10%
probability to watch other channels. The channel switching time
is distributed according to the survey result in Fig. 22 of the sup-
plementary file (i.e., a certain percent of nodes have a certain
channel switching interval time). A node periodically switches
channel after its switching interval time has elapsed. The statis-
tics in [53] and [7] are used for the distribution of the download
bandwidth in the simulation. A node’s upload bandwidth is set
to 1/3 of its download bandwidth [54]. The default settings are
summarized in Table II.
Since mesh structure is used in most current P2P live

streaming systems, we first built SAVE on the mesh structure
and compared it to mesh-based system [2] (Mesh), tree-based
system [23] (Tree), and DHT-based system (DCO) [20] in order
to show the effectiveness of SAVE on improving the efficiency
of these systems, where a node needs to contact the central
server for switching channels. We also compared SAVE to the
OAZE distributed channel switching approach [19]. For OAZE,
we used its practical algorithm, in which every peer connects
to a channel that is randomly picked among the channel group
of the peer’s current channel. The node connects to number
of nodes in its connected channel, and was randomly chosen
from 4 and 5. For SAVE, we have two variations using the
centralized (Section III-B.1) and decentralized (Section III-B.2)
channel clustering methods, represented by “SAVE-C” and
“SAVE-D,” respectively. We also built SAVE upon DCO for
comparison.

A. Switching Delay and Server Load

We measured the switch delay by the time interval between
the timestamp that a node sends a request for switching to a
new channel and the timestamp that the node receives the first
chunk of the new channel. Figs. 8(a) and 9(a) show the switch
delays in the simulation and PlanetLab experiments, respec-
tively. We randomly chose 1000 switchings from all switch-
ings. We then ordered the switch delays in an ascending order,
calculated the average value of every 100 values, and finally
got 10 average values. We see that both SAVE-C and SAVE-D
achieve the fastest switching, which confirms their highly effi-
cient video streaming due to the channel clustering and friendlist
schemes. In other systems, a node needs to contact the central-
ized server in order to join in another overlay, thus generating
a longer delay. SAVE-D has a slightly larger startup delay than
SAVE-C. This is because SAVE-C has the global information
of all channel switching activities of all nodes in the system



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: SOCIAL-NETWORK-AIDED EFFICIENT P2P LIVE STREAMING SYSTEM 9

Fig. 9. Experimental results from the PlanetLab testbed. (a) Channel switch delay. (b) Server load. (c) Distribution of resolved switching requests. (d) Effective-
ness of friendlists. (e) Clustering cost.

for more accurate clustering channels, while SAVE-D relies on
local cluster information exchanges. We also see that Tree pro-
duces slightly shorter delay than Mesh because a node in Mesh
needs to pull a chunk from its neighbors, while Tree uses push.
DCO generates lower delay than Mesh and Tree in simulation
and generates lower delay than Mesh but higher delay than Tree
in the PlanetLab results. DCO uses stable nodes as DHT nodes
for locating chunk owners. In the simulation with a stable envi-
ronment, nodes in DCO can always find chunk owners relying
on DHT, leading to lower delay. However, DHT nodes may fail
in a less stable environment in the PlanetLab testbed, which
leads to chunk owner location failures and longer delay. OAZE
yields a lower switch delay than DCO. This is because each node
in OAZE functions as a channel switcher, so a channel switching
node may find a switcher of the corresponding channel in its
neighbors to join in the channel overly. OAZE yields higher
delay than SAVE-D and SAVE-C. As SAVE clusters channels
with frequent interactions and a node’s friends have the same
interests and watching time as the node, a node has a high prob-
ability to find nodes in the target channel. We also observe that
the delay on PlanetLab exhibits an exponential growth, which
is different from the simulation results. This is because in the
simulation test, the bandwidths of nodes are constant, while in
PlanetLab, nodes’ real bandwidth varies and some nodes have
very low bandwidth, resulting in long delay in communication.
We define server load as the total number of channel joining

requests served by the server in order to measure the effective-
ness of SAVE in achieving its objective. Figs. 8(b) and 9(b)
show the server loads over time in the simulation and PlanetLab
experiments, respectively. We observe that SAVE incurs sig-
nificantly lower server load than other systems. SAVE releases
the load on the server by clustering channels with frequent in-
teractions and building friendlists. SAVE-C generates slightly
lower server load than SAVE-D due to its more accurate clus-
tering of channels. We see that Mesh generates slightly lower
server load than Tree because nodes in Tree need to contact the
server more frequently since chunks often fail to transmit due to
the vulnerability of the tree structure to churn. DCO produces
lower server load than Mesh and Tree due to two reasons. First,
nodes can easily find chunk owners relying on DHT. Second,
nodes can subsequently receive chunks from the located chunk
owners. We see that OAZE produces lower server load than
DCO because all nodes in OAZE function as channel switchers
and help the server resolve the switching requests. OAZE pro-
duces higher server load than SAVE because the probability for
a node to find a switcher for the corresponding channel within its

neighbors is not high in OAZE, while SAVE can provide a high
probability for a node to find nodes in a corresponding channel.

B. Effectiveness of the Social Network in Save

Figs. 8(c) and 9(c) show the percent of resolved switch
requests using clusters, friends, and the server in SAVE-C
and SAVE-D in the simulation and PlanetLab experiments,
respectively. In both systems, a significantly higher percentage
of switch requests is resolved by clusters, a moderate per-
centage of requests is resolved by friends, and a very small
percentage of requests is resolved by the server. The results
demonstrate the effectiveness of the channel clustering and
friendlist schemes. We also see that SAVE-C has a higher
percentage in using clusters than SAVE-D because SAVE-C
has higher accuracy in clustering channels than SAVE-D with
global information. Figs. 8(d) and 9(d) show the effect of the
number of friends in a friendlist on the channel switch delay.
We see that as the number of friends increases, switch delay
decreases on PeerSim and PlanetLab. When a node has more
friends, it has a higher probability to find a friend watching
the channel it wants to switch to. We also see that when the
number of friends increases further, the reduction in switch
delay becomes smaller. Thus, a relatively small number of
friends is sufficient to make the friendlist scheme effective.
Friendlist is an indispensable component in SAVE. As shown

in Figs. 8(c) and 9(c), a moderate percentage of channel switch
requests is resolved by friends.We tested the impact of friendlist
on the channel switch delay and server load. We used “Cluster”
to denote SAVE with only channel cluster strategy, “Friend” to
denote SAVE with only friendlist strategy, and “Combine” to
denote SAVE with both strategies. In “Cluster,” when a node’s
channel switching request cannot be resolved by the channel
cluster, the node will contact the server directly; meanwhile in
“Friend”, a node will first contact its friends when switching to
a new channel, and it requests the server if the friends cannot
help it join the corresponding channel overlay. Figs. 10(a)
and 11(a) show the switch delay for different approaches on
PeerSim and PlanetLab, respectively. We see that “Cluster”
yields the least switch delay due to the effectiveness of channel
clustering, and nodes have a high probability to join a new
channel overlay with the help of its channel head. “Friend”
yields larger delay than “Cluster” due to the limited number of
friends, and around 30% percent of switch requests are solved
by friends. “Combine” generates the largest switch delay, as
a node will try “Cluster” and “Friend” before resorting to the
server. Figs. 10(b) and 11(b) show the sever load status for



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 10. Impact of friendlist on PeerSim. (a) Channel switch delay. (b) Server
load.

Fig. 11. Impact of friendlist on PlanetLab. (a) Channel switch delay. (b) Server
load.

different approaches on PeerSim and PlanetLab, respectively.
We see that by combining “Cluster” and “Friend” strategies,
the sever load will be dramatically reduced. Thus, “Friend” is
effective in reducing server load in SAVE.
The experimental results show that SAVE is effective in clus-

tering channels. In PeerSim, on average, SAVE is able to group
all 100 channels into nine channel clusters. Within each cluster,
one channel overlay merging occurs, and other channel overlays
are bridged. On PlanetLab, all channels are grouped into five
clusters. Within each cluster, an average of 0.8 overlay merging
occurs, and all other channel overlays are bridged.

C. Cost of Save

Figs. 8(e) and 9(e) show the clustering cost of SAVE-C and
SAVE-D measured by the total number of messages to cluster
channels in the simulation and PlanetLab experiments, respec-
tively. The clustering cost increases as the number of nodes in
the system increases. Also, SAVE-D requires more communi-
cations than SAVE-C in building the clusters. This is because in
SAVE-C, channel heads report to the server about node channel
switching activities. In SAVE-D, channel heads report to their
cluster heads about node channel switchings, and all cluster
heads need to communicate with each other for cluster com-
bining and splitting. However, the communication messages are
distributed among many cluster head nodes, which does not in-
crease server load. We can see that SAVE’s clustering cost is
acceptable.
We use to denote the total number of downloaded chunks

in the system, and use to denote the total number of commu-
nication messages including those that handle node joins and
departures. Then, we measured the maintenance overhead by

. The lifetime of each node is chosen from
min, where the average lifetime was varied

from 10 to 30 with an increment of 5 in each step. Fig. 12(a)
and (b) shows the maintenance overhead as a function of node
churn rate on PeerSim and PlanetLab, respectively. As the av-
erage lifetime increases, the maintenance overhead decreases.

Fig. 12. Overhead vs. node churn rate. (a) The PeerSim simulator. (b) The
PlanetLab testbed.

This is because a slower node join and departure rate gener-
ates fewer messages for joining and leaving the overlay struc-
ture. OAZE and SAVE are built on Mesh, and they have addi-
tional methods to avoid relying on the central server for channel
switching, which produce additional overhead, so they produce
higher overhead than Mesh.
OAZE generates a higher overhead than SAVE-C and

SAVE-D. This is because a node probes neighbors within
two hops to switch to a new channel in OAZE. In SAVE-C
and SAVE-D, due to the effectiveness of both the channel
clustering scheme and friendlist scheme, a node can join a new
channel overlay with fewer node communications, leading to
less overhead than OAZE. Also, SAVE-D generates a higher
overhead than SAVE-C since cluster heads need to commu-
nicate with each other in SAVE-D. We can see that SAVE’s
overheads are acceptable. DCO produces a lower overhead
than Mesh because nodes in DCO do not need to constantly
contact each other for chunk information. Tree generates the
least overhead because each node maintains fewer neighbors
than other methods; each node has one parent and two children.
However, Tree is vulnerable to churn as mentioned before.

D. Performance With Flash Crowds and User Churn

In order to test the performance of SAVE under flash crowds,
we made a large number of users switch to a specific channel
(e.g., a football game or a concert) according to [14]. Specifi-
cally, 15% of users switched to this channel every 5 min during
the first 30 min, and 8% of users changed to this channel every
5 min during the next 60 min. Other settings are the same as the
default settings. Figs. 13(a) and 14(a) show the switch delays,
and Figs. 14(b) and 13(b) show the server loads in the simulation
and PlanetLab experiments, respectively. We see that the exper-
imental results are consistent with those in Figs. 8(a), 9(a), 8(b),
and 9(b) due to the same reasons. These experimental results
show that SAVE outperforms other systems with lower switch
delay and lower server load even when the system is under flash
crowds.
Next, we test the performance of SAVE under different node

churn rates. The node churn rate setting is the same as that in
Fig. 12(a) and (b). Figs. 13(c) and 14(c) show the switch delays,
and Figs. 13(d) and 14(d) show the server loads with different
churn rates in simulation and PlanetLab experiments, respec-
tively. We see that the relative performance differences between
different systems are consistent with those in the previous ex-
perimental results due to the same reasons. Also, we see that
the churn rate does not greatly affect the performance of the
systems due to their structure maintenance mechanisms. These
results verify that SAVE is resilient to node churn.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: SOCIAL-NETWORK-AIDED EFFICIENT P2P LIVE STREAMING SYSTEM 11

Fig. 13. Experimental results from simulation on PeerSim under flash crowds and churn. (a) Channel switch delay under flash crowds. (b) Server load under flash
crowds. (c) Channel switch delay under different user churn rates. (d) Server load under different user churn rates.

Fig. 14. Experimental results from the PlanetLab testbed under flash crowds and churn. (a) Channel switch delay under flash crowds. (b) Server load under flash
crowds. (c) Channel switch delay under different user churn rates. (d) Server load under different user churn rates.

Fig. 15. Experimental results from simulation on PeerSim with different workloads and streaming bit rates. (a) Channel switch delay with different workloads.
(b) Server load with different workloads. (c) Channel switch delay with different streaming bit rates. (d) Server load with different streaming bit rates.

Fig. 16. Experimental results from the PlanetLab testbed with different workloads and streaming bit rates. (a) Channel switch delay with different workloads.
(b) Server load with different workloads. (c) Channel switch delay with different streaming bit rates. (d) Server load with different streaming bit rates.

E. Performance With Different Workloads

In this experiment, we set the probability that a node will
switch to a channel in its interested channels to 40%, 60%, 76%,
and 90% according to [19], [55]. Figs. 15(a) and 16(a) show the
switch delays of different systems in the simulation and Plan-
etLab experiments, respectively. We see that the switch delays
remain nearly constant under different workload scenarios, and
SAVE outperforms other systems in reducing the switch delay.
Figs. 15(b) and 16(b) show the server loads of different systems
in the simulation and PlanetLab experiments, respectively. We

can see that the experimental results are consistent with those
in Figs. 8(b) and 9(b) due to the same reasons. These results in-
dicate that SAVE is effective in reducing the switch delay and
server load under different workloads.

F. Performance With Different Streaming Bit Rates

Based on the real streaming bit rates on current video
streaming services [56], we varied the streaming bit rate from
200 to 2200 kb/s and tested the performance of different
systems. Figs. 15(c) and 16(c) show the switch delays, and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 17. Effectiveness of the chunk pushing strategies on PeerSim. (a) Random
chunk pushing. (b) Channel-closeness-based chunk pushing.

Figs. 15(d) and 16(d) show the server loads of different systems
in the simulation and PlanetLab experiments, respectively. We
see that the switch delays and server loads of different systems
remain nearly stable with different streaming bit rates. Also,
the relative performance differences between different systems
are consistent with those in Figs. 8(c) and 9(a), and Figs. 8(b)
and 9(b), due to the same reasons. These experimental results
indicate that SAVE outperforms other systems in switch delay
and server load with different streaming bit rates.

G. Channel-Closeness-Based Chunk Pushing

In this experiment, we compare our proposed chunk pushing
strategy to the random pushing strategy. In the random pushing
strategy, the server randomly chooses channels and pushes the
chunks of these channels using the same way as in our proposed
pushing strategy; was set to 10 and 4 in the PeerSim and Plan-
etLab experiments, respectively. The cache size of nodes in the
system follows a Pareto distribution [57] with parameter .
We varied the average value of the Pareto distribution in our ex-
periments. The number of cached chunks for each channel was
set to 660.
Fig. 17(a) and (b) shows the average channel switch delay

versus the average cache size (in the Pareto distribution) for
the random pushing strategy and our proposed pushing strategy
on PeerSim, respectively. Comparing these two figures, we see
that our proposed strategy yields switch delay reduction ranging
from 60 to 170 ms for all five methods. The reason for this im-
provement is that our strategy pushes the chunks of channels
that are likely to be viewed into node caches, so that a node
has a higher probability to find the cached chunks of its desired
channel from itself or nearby nodes. Both figures show that the
switch delay decreases as the average cache size increases since
a larger cache size allows a node to store the chunks of more
channels, hence increasing the probability to find cached chunks
for a desired channel. The two figures show that the switch delay
follows SAVE-C < SAVE-D <OAZE <DCO<Tree <Mesh due
to the same reasons as in Fig. 8(a).
Fig. 18(a) and (b) shows the average channel switch delay

versus the average cache size (in the Pareto distribution) for
the random pushing strategy and our proposed pushing strategy
on PlanetLab, respectively. Comparing these two figures, we
see that our strategy produces switch delay reduction ranging
from 10 to 160 ms for all five methods. We also see that as
the cache size increases, the switch delay decreases in both fig-
ures. These results are consistent with the simulation results in
Fig. 17(a) and (b) for the same reasons. We also notice that the
switch delay follows SAVE-C < SAVE-D < OAZE < Tree <

Fig. 18. Effectiveness of the chunk pushing strategies on PlanetLab.
(a) Random chunk pushing. (b) Channel-closeness-based chunk pushing.

Fig. 19. Social success rate versus cache size. (a) PeerSim simulator. (b) Plan-
etLab testbed.

DCO < Mesh, which is consistent with that in Fig. 9(a) due to
the same reasons.
Fig. 19(a) and 19 show the social success rate for different

average size of cache (in the Pareto distribution) in simulation
and on PlanetLab, respectively. We see that our proposed
pushing strategy yields improvement in social success rate
over the random pushing strategy. Also, when the cache size
increases, the social success rate increases because a larger
cache can store more channel chunks, thus chunk requests are
more likely to be resolved by peers rather than the server.

H. Capacity-Based Chunk Provider Selection

In this experiment, we assumed that the capacity of nodes in
the system follows a Pareto distribution [57]–[59] with param-
eter . When a node receives requests more than its ca-
pacity, it puts the extra requests into a waiting queue until it has
spare capacity. If a request in a queue cannot be served within
2000 ms, it will be forwarded to the server. We compared our
proposed chunk provider selection strategy to the random se-
lection strategy, in which randomly selected nodes are recom-
mended to the chunk requester as chunk providers.
Fig. 20(a) and (b) shows the average channel switch delay

versus the average node capacity (in the Pareto distribution) for
the two provider selection strategies on PeerSim, respectively.
From Fig. 20(a), we see that the switch delay decreases as the
capacity increases for all five methods. This is because when
nodes in the system have more capacity to serve chunk requests,
the chunk requests are less likely to be delayed. Comparing
Fig. 20(a) and (b), we see that our chunk provider selection
strategy generates the channel switch delay reduction ranging
from 10 to 220 ms for all five methods. The random selection
strategy may forward a chunk request to an overloaded node,
which increases switch delay. Our strategy selects nodes with
high available capacities as the chunk providers, thus avoiding



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: SOCIAL-NETWORK-AIDED EFFICIENT P2P LIVE STREAMING SYSTEM 13

Fig. 20. Effectiveness of the chunk provider selection strategies on PeerSim.
(a) Random selection. (b) Capacity-based selection.

Fig. 21. Effectiveness of the chunk provider selection strategies on PlanetLab.
(a) Random selection. (b) Capacity-based selection.

request serving delay. Therefore, our strategy is effective in
reducing the average channel switch delay. When the average
capacity increases, the improvement made by our proposed
strategy decreases because when most nodes in the system have
high capacities, the effect of selecting high-capacity nodes as
chunk providers is not very obvious.
Fig. 21(a) and (b) shows the average channel switch delay

versus the average node capacity (in the Pareto distribution)
when using the random selection strategy and using our pro-
posed selection strategy on the PlanetLab, respectively. We can
make the same observations as in Fig. 20(a) and (b) for the same
reasons. Our proposed strategy leads to about 3 to 200 ms re-
duction in switch delay for all five methods. When the average
capacity is 2, the latency reduction for SAVE-C and SAVE-D
is 160 and 200 ms, respectively. These results further confirm
the effectiveness of our capacity-based chunk provider selection
strategy.

V. CONCLUSION

In this paper, we propose SAVE, a social-network-aided ef-
ficient P2P live streaming system. SAVE supports successive-
and multiple-channel viewing with low switch delay and low
server overhead by enhancing the operations of joining and
switching channels. SAVE considers the historical channel
switching activities as the social relationships among channels
and clusters the frequently interacted channels together by
merging overlays or building bridges between the overlays. It
maximizes the probability that existing users can locate their
desired channels within its channel cluster and can take the
bridges for channel switches. In addition, each node has a
friendlist that records nodes with similar watching patterns,
which is used to join a new channel overlay. SAVE also
has the channel-closeness-based chunk pushing strategy and
capacity-based chunk provider selection strategy to enhance

its system performance. Our survey on user video streaming
watching activities confirms the necessity and feasibility of
SAVE. Through the experiments on the PeerSim simulator and
PlanetLab testbeds, we prove that SAVE outperforms other
representative systems in terms of overhead, video streaming
efficiency and server load reduction, and the effectiveness of
SAVE’s two strategies. Our future work lies in further reducing
the cost of SAVE in structure maintenance and node communi-
cation. Also, we will design algorithms for cluster separation
and decentralized cluster head election.

ACKNOWLEDGMENT

The authors would like to thank Mr. Z. Li for his help in
the PlanetLab experiment and Mr. H. Wang for proofreading
the conference version of this paper. An early version of
this work was presented in the Proceedings of the ACM In-
ternational Conference on Multimedia (MM), Nara, Japan,
October 9–November 2, 2012 [60].

REFERENCES

[1] “PPLive,” [Online]. Available: http://www.pplive.com
[2] “UUSee,” [Online]. Available: http://www.uusee.com
[3] “PPStream,” [Online]. Available: http://www.ppstream.com
[4] J. Liu, S. G. Rao, B. Li, and H. Zhang, “Opportunities and challenges

of peer-to-peer internet video broadcast,” Proc. IEEE, vol. 96, no. 1,
pp. 11–24, Jan. 2008.

[5] C. Wu and B. Li, “Exploring large-scale peer-to-peer live streaming
topologies,” Trans. Multimedia Comput., vol. 4, no. 3, 2008, Art. no.
19.

[6] F. Dobrian, V. Sekar, I. Stoica, and H. Zhang, “Understanding the im-
pact of video quality on user engagement,” in Proc. ACM SIGCOMM,
2011, pp. 362–373.

[7] X. Cheng and J. Liu, “NetTube: Exploring social networks for
peer-to-peer short video sharing,” in Proc. IEEE INFOCOM, 2009,
pp. 1152–1160.

[8] M. Mcpherson, “Birds of a feather: Homophily in social networks,”
Annu. Rev. Sociol., vol. 27, no. 1, pp. 415–444, 2001.

[9] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao, “User inter-
actions in social networks and their implications,” in Proc. EuroSys,
2009, pp. 205–218.

[10] A. Fast, D. Jensen, and B. Levine, “Creating social networks to improve
peer-to-peer networking,” in Proc. ACM SIGKDD, 2005, pp. 568–573.

[11] A. Iamnitchi, M. Ripeanu, and I. Foster, “Small-world file-sharing
communities,” in Proc. IEEE INFOCOM, 2004, pp. 952–963.

[12] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” in Proc. STOC, 2000, pp. 163–170.

[13] S. Milgram, “The small world problem,” Psychol. Today, vol. 2, no. 1,
pp. 60–67, 1967.

[14] I. Bermudez,M.Mellia, andM.Meo, “Investigating overlay topologies
and dynamics of P2P-TV systems: The case of SopCast,” IEEE J. Sel.
Areas Commun., vol. 29, no. 9, pp. 1863–1871, Oct. 2011.

[15] F. Wang, J. Liu, and Y. Xiong, “Stable peers: existence, importance,
and application in peer-to-peer live video streaming,” in Proc. IEEE
INFOCOM, 2008, pp. 2038–2046.

[16] J. Mendes, P. Salvador, and A. Nogueira, “P2P-TV service and user
characterization,” in Proc. IEEE CIT, 2010, pp. 2612–2620.

[17] “The PeerSim simulator,” 2013 [Online]. Available: http://
peersim.sf.net

[18] “PlanetLab,” [Online]. Available: http://www.planet-lab.org/
[19] Y. Chen, E. Merrer, Z. Li, Y. Liu, and G. Simon, “OAZE: A network-

friendly distributed zapping system for peer-to-peer IPTV,” Comput.
Netw., vol. 56, no. 1, pp. 365–377, 2012.

[20] H. Shen, Z. Li, and J. Li, “A DHT-aided chunk-driven overlay for scal-
able and efficient peer-to-peer live streaming,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 11, pp. 2125–2137, Nov. 2012.

[21] Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhang, and
H. Zhang, “Early experience with an internet broadcast system based
on overlay multicast,” in Proc. USENIX, 2004, p. 12.

[22] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-
cation layer multicast,” in Proc. SIGCOMM, 2002, pp. 205–217.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[23] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in
Proc. ACM SIGMETRICS, 2000, pp. 1–12.

[24] R. Tian, Q. Zhang, Z. Xiang, Y. Xiong, X. Li, and W. Zhu, “Robust
and efficient path diversity in application-layer multicast for video
streaming,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8,
pp. 961–972, Aug. 2005.

[25] S. Asaduzzaman, Y. Qiao, and G. Bochmann, “CliqueStream: An effi-
cient and fault-resilient live streaming network on a clustered peer-to-
peer overlay,” in Proc. P2P, 2008, pp. 269–278.

[26] X. Zhang, J. Liu, B. Li, and T. P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for peer-to-peer live media streaming,” in
Proc. IEEE INFOCOM, 2005, pp. 2102–2111.

[27] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-peer
live streaming,” in Proc. IEEE INFOCOM, 2006, pp. 1–10.

[28] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in Proc. IPTPS,
2005, pp. 127–140.

[29] T. Locher, S. Schmid, and R. Wattenhofer, “eQuus: A provably robust
and locality-aware peer-to-peer system,” in Proc. P2P, 2006, pp. 3–11.

[30] Y. Guo, C. Liang, and Y. Liu, “AQCS: Adaptive queue-based chunk
scheduling for P2P live streaming,” in Proc. IFIP Netw., 2008, pp.
433–444.

[31] L. Massoulie, A. Twig, C. Gkantsidis, and P. Rodriguez, “Randomized
decentralized broadcasting algorithms,” in Proc. IEEE INFOCOM,
2007, pp. 1073–1081.

[32] F. Picconi and L. Massoulie, “Is there a future for mesh-based live
video streaming?,” in Proc. P2P, 2008, pp. 289–298.

[33] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer receiver-driven
mesh-based streaming,” in Proc. IEEE INFOCOM, 2007, pp.
1415–1423.

[34] J. Venkataraman and P. Francis, “Chunkyspread: Multi-tree unstruc-
tured peer-to-peer multicast,” in Proc. IPTPS, 2006, pp. 1–10.

[35] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A hybrid tree/mesh
overlay for application-layer live video multicast,” in Proc. ICDCS,
2007, p. 49.

[36] J. Mol, A. Bakker, J. Pouwelse, D. Epema, and H. Sips, “The design
and deployment of a bittorrent live video streaming solution,” in Proc.
ISM, 2009, pp. 342–349.

[37] Y. Liu, “Delay bounds of chunk-based peer-to-peer video streaming,”
IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1195–1206, Aug. 2010.

[38] C. Wu, B. Li, and S. Zhao, “Multi-channel live P2P streaming: Refo-
cusing on servers,” in Proc. IEEE INFOCOM, 2008, pp. 2029–2037.

[39] M. , L. Xu, and B. Ramamurthy, “A flexible divide-and-conquer pro-
tocol for multi-view peer-to-peer live streaming,” in Proc. P2P, 2009,
pp. 291–300.

[40] J. Liang, B. Yu, Z. Yang, and K. Nahrstedt, “A framework for future
internet-based TV broadcasting,” in Proc. IPTV, 2006, pp. 1–6.

[41] M. Wang, L. Xu, and B. Ramamurthy, “Channel-aware peer selection
in multi-view peer-to-peer multimedia streaming,” in Proc. ICCCN,
2008, pp. 1–6.

[42] D. Wu, Y. Liu, and K. Ross, “Modeling and analysis of multichannel
P2P live video systems,” IEEE/ACM Trans. Netw., vol. 18, no. 4, pp.
1248–1260, Aug. 2010.

[43] F. Ramos, J. Crowcroft, R. Gibbens, P. Rodriguez, and I. White,
“Channel smurfing: Minimising channel switching delay in IPTV
distribution networks,” in Proc. ICME, 2010, pp. 1327–1332.

[44] A. Kermarrec, E. Merrer, Y. Liu, and G. Simon, “Surfing peer-to-peer
IPTV: Distributed channel switching,” in Proc. Euro-Par, 2009, pp.
574–586.

[45] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of
YouTube videos,” in Proc. IWQoS, 2008, pp. 229–238.

[46] P. Salvador and A. Nogueira, “Study on geographical distribution and
availability of BitTorrent peers sharing video files,” in Proc. ISCE,
2009, pp. 1–4.

[47] R. E. Gomory and T. C. Hu, “Multi-terminal network flows,” J. SIAM,
vol. 9, no. 4, pp. 551–570, 1961.

[48] J. Hao and J. Orlin, “A faster algorithm for finding the minimum cut in
a directed graph,” J. Algor., vol. 17, no. 3, pp. 424–446, 1994.

[49] M. Newman, “Modularity and community structure in networks,” in
Proc. PNAS, 2006, pp. 8577–8582.

[50] K. Xu,M. Zhang, J. Liu, Z. Qin, andM. Ye, “Proxy caching for peer-to-
peer live streaming,” Comput. Netw., vol. 54, no. 7, pp. 1229–1241,
2010.

[51] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang, “Challenges, design
and analysis of a large-scale p2p-vod system,” in Proc. SIGCOMM,
2008, pp. 375–388.

[52] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale operational
on-demand streaming with random network coding,” in Proc. IEEE
INFOCOM, 2010, pp. 1–9.

[53] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-demand be
profitable?,” in Proc. SIGCOMM, 2007, pp. 133–144.

[54] “The difference between upload and download speed for broadband
DSL,” [Online]. Available: http://www.broadbandinfo.com/cable/
speed-test

[55] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatrianin,
“Watching television over an IP network,” in Proc. IMC, 2008, pp.
71–84.

[56] Move Networks, American Fork, UT, USA, “Move Networks,” [On-
line]. Available: http://www.movenetworkshd.com/

[57] X. Zhang, Y. Qu, and L. Xiao, “Improving distributed workload perfor-
mance by sharing both CPU and memory resources,” in Proc. ICDCS,
2000, pp. 233–241.

[58] K. Psounis, P.M. Fernandez, B. Prabhakar, and F. Papadopoulos, “Sys-
tems with multiple servers under heavy-tailed workloads,” Perform.
Eval., vol. 62, no. 1–4, pp. 456–474, 2005.

[59] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-sim-
ilarity through high-variability: Statistical analysis of Ethernet LAN
traffic at the source level,” IEEE/ACM Trans. Netw., vol. 5, no. 1, pp.
71–86, Feb. 1997.

[60] H. Shen, Z. Li, H. Wang, and J. Li, “Leveraging social network con-
cepts for efficient peer-to-peer live streaming systems,” in Proc. ACM
Multimedia, 2012, pp. 249–258.

[61] “Surveymonkey: Free online survey software and questionnaire tool,”
[Online]. Available: http://www.surveymonkey.com/

Haiying Shen (M’07–SM’13) received the B.S.
degree in computer science and engineering from
Tongji University, Shanghai, China, in 2000, and
the M.S. and Ph.D. degrees in computer engineering
from Wayne State University, Detroit, MI, USA, in
2004 and 2006, respectively.
She is currently an Associate Professor with the

Electrical and Computer Engineering Department,
Clemson University, Clemson, SC, USA. Her
research interests include distributed computer
systems and computer networks with an emphasis

on P2P and content delivery networks, mobile computing, wireless sensor
networks, and cloud computing.
Dr. Shen is a Microsoft Faculty Fellow of 2010 and a member of the Associ-

ation for Computing Machinery (ACM).

Yuhua Lin received the B.S. and M.S. degrees in
computer engineering from Sun Yat-sen University,
Guangzhou, China, in 2009 and 2012, respectively,
and is currently pursuing the Ph.D. degree in elec-
trical and computer engineering at Clemson Univer-
sity, Clemson, SC, USA.
His research interests include social networks and

reputation systems.

Jin Li (S’94–A’95–M’96–SM’99–F’12) received the
Ph.D. degree in electrical engineering from Tsinghua
University, Beijing, China, in 1994.
He is currently a Principal Researcher managing

the Multimedia Communication and Storage Team
with Microsoft Research, Redmond, WA, USA. His
invention has been integrated into many Microsoft
products, such as Microsoft Office Communi-
cator/Lync, Live Messenger, Live Mesh, Windows
7, Windows 8, etc. He holds 45 issued US patents.
He has published in top conferences and journals in

a wide area, covering audio/image/video compression, multimedia streaming,
VoIP and video conferencing, P2P networking, distributed storage system with
erasure coding and deduplication, and high-performance storage system design.


